
Journal of Geometry and Physics 38 (2001) 152–169

Orbifold Hodge numbers of the wreath
product orbifolds

Weiqiang Wanga,∗, Jian Zhoub
a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Received 31 July 2000

Abstract

We prove that the wreath product orbifolds studied earlier by the first author provide a large class
of higher dimensional examples of orbifolds whose orbifold Hodge numbers coincide with the
ordinary ones of suitable resolutions of singularities. We also make explicit conjectures on elliptic
genera for the wreath product orbifolds. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the study of orbifold string theory, Dixon et al. [12] introduced the notion of orbifold
Euler number for a smooth manifoldY acted on by a finite groupG and raised the question
on the existence of a resolution of singularities ofM/G whose ordinary Euler number
coincides with the orbifold Euler number. The orbifold Euler number has subsequently
been interpreted as the Euler number for equivariantK-theory (cf. [1]). The notion of
orbifold Euler number has been further refined to give rise to the notion of orbifold Hodge
numbers [26,29] and more generally the stringy Hodge numbers [5]. The orbifold Hodge
numbers of an orbifold are then conjectured to coincide with the ordinary Hodge numbers
of a suitable resolution of the orbifold. For recent related development, see [4,5,10,24] and
the references therein.
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A well-known series of examples with such a property is provided by the symmetric
product of a surface which admits a resolution of singularities given by the Hilbert scheme
of points. In this case the orbifold Euler number calculated by Hirzebruch and Höfer [19]
matches with the Euler number of the Hilbert scheme found earlier by Göttsche [15]. It is
further shown by Göttsche [16] that the orbifold Hodge numbers matches with the Hodge
numbers of the Hilbert scheme calculated by Göttsche and Soergel [17] (see also [8]). The
same method has been used by the second author [30], also for the calculation for higher
dimensional complex manifolds.1

The wreath product orbifolds, which are generalizations of the symmetric products, were
shown by the first author [27] (see also [14,28]) to have deep connections with Hilbert
schemes of surfaces and vertex representations of infinite dimensional Lie algebras. More
explicitly, if Y is a smooth manifold acted upon by a finite groupG, then there exists a
natural action on thenth Cartesian productYn by the wreath productGn (which is the
semidirect product of the symmetric groupSn and the product groupGn). The orbifold
Euler number forYn/Gn has been explicitly calculated inloc. cit. If in addition we assume
that Y is a quasi-projective surface andX is a resolution of singularities of the orbifold
Y/G, then the following commutative diagram

X[n] → Xn/Sn

↓ ↓
Yn/Gn

∼=← (Y/G)n/Sn

implies that the Hilbert schemeX[n] is a resolution of singularities of the orbifoldXn/Gn.
It has been shown [27] that if the ordinary Euler number ofX equals the orbifold Euler
number ofY/G then the ordinary Euler number ofX[n] equals the orbifold Euler number
of Xn/Gn for all n. WhenG is the trivial group andX equalsY , one recovers the case of
symmetric products.

The purpose of the present paper is to point out that the wreath product orbifolds also
provide a large class of new higher dimensional examples which verify the orbifold Hodge
number conjecture. More precisely, we show that ifY is a quasi-projective surface andX

is a resolution of singularities ofY/G such that the ordinary Hodge numbers ofX coincide
with the orbifold Hodge numbers of the orbifoldY/G, then the orbifold Hodge numbers of
the orbifoldYn/Gn coincide with the Hodge numbers of the Hilbert schemeX[n] , which is
a resolution of singularities. Our proof rely on the analysis of fixed-point set structures of
the wreath product action onYn (cf. [27]). As in [30] our calculation of the orbifold Hodge
numbers forYn/Gn actually works for any complexG-manifold of even dimension.

In a very recent paper [7], Bryan et al. pointed out a series of examples (besides the
well-known symmetric products) verifying the orbifold Hodge numbers conjecture. It turns
out that their examples correspond to our special case whenY is an abelian surface,G is

1 Seeing the math review (99c:14022) of [16] but not the paper itself when he was writing [30], the second author
got the wrong impression that Göttsche proved his result by establishing the strong McKay correspondence for
symmetric products. This misunderstanding has been clarified when we actually looked into the paper [16] during
the preparation of the present paper.
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Z2, andX is the Kummer K3 surface. They remarked that most examples in literature are
lower dimensional and no other higher dimensional examples were known to them. Their
remarks are largely responsible for us to decide to write up the results on the wreath product
orbifolds which have been known to us for some time. We do not know any other higher
dimensional examples which verify the orbifold Hodge number conjecture.

To conclude we also make two explicit conjectures on elliptic genera for wreath product
orbifolds. These are motivated and in turn generalize the work of Dijkgraaf et al. [11] on
elliptic genera for symmetric products.

The layout of this paper is as follows. In Section 2, we recall the fixed-point set structures
of the wreath product action, and the definition of the orbifold Hodge numbers, for both
the compact and non-compact situations. In Section 3, we prove our main results, Theorem
3.1 on the orbifold Hodge numbers of wreath product orbifolds and Theorem 3.2 on the
verification of orbifold Hodge number conjecture. In Section 4, we provide various examples
illustrating our main results and in addition formulate two conjectures on elliptic genera.

2. Preliminaries on the wreath product and orbifold Hodge numbers

In this section, we first review the definition of a wreath productGn associated to a
finite groupG, and the descriptions of conjugacy classes and centralizers forGn (cf., e.g.,
[20,23]). We also describe fixed-point sets for the action ofGn on thenth Cartesian product
of a G-manifold, following [27]. We then recall the definition of orbifold Hodge numbers
(cf. [5,29]).

2.1. The wreath product action onYn

Let G be a finite group and denote byG∗ the set of conjugacy classes ofG. Let Gn =
G× · · · ×G be the direct product ofn copies ofG. Denote by [g] the conjugacy class of
g ∈ G. The symmetric groupSn acts onGn by permuting then factors:s(g1, . . . , gn) =
(gs−1(1), . . . , gs−1(n)). The wreath productGn = G o Sn is defined to be the semidirect
productGn o Sn of Gn andSn, namely the multiplication onGn is given by(g, s)(h, t) =
(g · s(h), st), whereg, h ∈ Gn, s, t ∈ Sn. Note, whenG is the trivial one-element group
the wreath productGn reduces toSn, and whenG is Z2 the wreath productGn is the
hyperoctahedral group, the Weyl group of typeC.

Givena = (g, s) ∈ Gn whereg = (g1, . . . , gn), we writes ∈ Sn as a product of disjoint
cycles: ifz = (i1, . . . , ir ) is one of them, thecycle-productgir gir−1 · · · gi1 ofa corresponding
to the cyclez is determined byg andz up to conjugacy. For eachc ∈ G∗ and each integer
r ≥ 1, letmr(c) be the number ofr-cycles ins whose cycle-product lies inc. Denote by
ρ(c) the partition havingmr(c) parts equal tor(r ≥ 1) and denote byρ = (ρ(c))c∈G∗
the corresponding partition-valued function onG∗. Note that‖ρ‖ := ∑

c∈G∗ |ρ(c)| =∑
c∈G∗,r≥1

rmr (c) = n, where|ρ(c)| is the size of the partitionρ(c). Thus we have defined
a map fromGn toPn(G∗), the set of partition-valued functionρ = (ρ(c))c∈G∗ onG∗ such
that‖ρ‖ = n. The functionρ or the data{mc(c)}r,c is called thetypeof a = (g, s) ∈ Gn.
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DenoteP(G∗) =
∑

n≥0Pn(G∗). It is well known (cf., e.g., [20,23]) that two elements in
Gn are conjugate to each other if and only if they have the same type.

Let us describe the centralizerZGn(a) of a ∈ Gn (cf. [20,23,27]). First, we consider the
typical case thata has onen-cycle. As the centralizers of conjugate elements are conjugate
subgroups, we may assume thata is of the forma = ((g, 1, . . . , 1), τ ), whereτ = (12· · · n).
Denote byZ∆

G(g), or Z
∆n

G (g) when it is necessary to specifyn, the following diagonal
subgroup ofGn (and thus a subgroup ofGn):

Z∆
G(g) = {((h, . . . , h), 1) ∈ Gn|h ∈ ZG(g)}.

The centralizerZGn(a) of a in Gn is equal to the productZ∆
G(g) · 〈a〉, where〈a〉 is the

cyclic subgroup ofGn generated bya.
Take a generic elementa = (g, s) ∈ Gn of type ρ = (ρ(c))c∈G∗ , whereρ(c) has

mr(c) r-cycles(r ≥ 1). We may assume (by taking a conjugation if necessary) that the
mr(c) r-cycles are of the form

gur(c) = ((g, 1, . . . , 1), (iu1, . . . , iur)), 1≤ u ≤ mr(c), g ∈ c.

Denotegr(c) = ((g, 1, . . . , 1), (12· · · r)). Throughout the paper,
∏

c,r is understood as the
product

∏
c∈G∗,r≥1. The centralizerZGn(a) of a ∈ Gn is isomorphic to a direct product of

the wreath products∏
c,r

(ZGr (gr(c)) o Smr(c)).

FurthermoreZGr (gr(c)) is isomorphic toZ∆r

G (g) · 〈gr(c)〉.
For aG-spaceY , we define an action ofGn onYn as follows. Givena = ((g1, . . . , gn), s),

we let

a · (x1, . . . , xn) = (g1xs−1(1), . . . , gnxs−1(n)), (1)

wherex1, . . . , xn ∈ Y .
Next, we recall the description of the fixed-point set(Y n)a for a ∈ Gn (cf. [27]). Let us

first look at the typical casea = ((g, 1, . . . , 1), τ ) ∈ Gn. Note that the centralizer group
ZG(g) preserves theg-fixed point setXg. The fixed point set is

(Y n)a = {(x, . . . , x) ∈ Yn|x = gx},
which can be naturally identified withYg. The action ofZGn(a) on(Y n)a can be identified
canonically with that ofZG(g) on Yg together with the trivial action of the cyclic group
〈z〉. Thus(Xn)a/ZGn(a) can be identified withXg/ZG(g).

All ZG(g) are conjugate and allXg are homeomorphic to each other for different rep-
resentativesg in a fixed conjugacy classc ∈ G∗. Also the orbit spaceXg/ZG(g) can be
identified with each other by conjugation for different representatives ofg in c ∈ G∗. We
agree to denoteZG(g) (resp.Yg, Y g/ZG(g)) by ZG(c) (resp.Y c, Y c/ZG(c)) by abuse of
notations. Similar remarks apply to other situations below when the choice of representatives
in a conjugacy class is irrelevant.
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For an elementa ∈ Gn of type {mr(c)}, the fixed-point set(Y n)a can be naturally
identified with

∏
c,r (Y

c)mr (c). Furthermore, the orbit space(Y n)a/ZGn(a) can be naturally
identified with∏

c,r

Smr (c)(Y c/ZG(c)), (2)

whereSm(X) denotes themth symmetric productXm/Sm.

2.2. Definition of orbifold Hodge numbers

Let Y be a compact complex manifold of complex dimensiond acted on by a finite
groupG of automorphisms. For each conjugacy classc = [g] ∈ G∗, let Y

g

1 , . . . , Y
g
Nc

be
the connected components of the fixed-point setYg. Zaslow [29] defined a shift number
F

g
α associated to each componentY

g
α as follows. On the tangent space to each point inY

g
α g

acts as a diagonal matrix diag(e2π
√−1θ1, . . . , e2π

√−1θd ), where 0≤ θi < 1. Then

Fg
α =

g∑
j=1

θj .

In general,Fg
α is just a rational number. However, there are many occasions when it is

an integer, e.g., when g acts on the tangent space by a matrix inSL(n,C).

Remark 2.1. In the case whenY is a complex surface, the shiftF
g
α is an integer only if

the componentFg
α is either an isolated point or two-dimensional. Indeed a finite subgroup

G of GL(2,C) acting onC2 has integer shifts if and only ifG lies inSL(2,C). That is, the
shift Fg

α = θ1+ θ2 is an integer if and only if detg = e2π
√−1(θ1+θ2) = 1.

In the case all the shifts are integers, theorbifold Hodge numbersof the orbifoldY/G

are defined to be

hs,t (Y, G) =
∑
c∈G∗

Nc∑
αc=1

hs−Fc
αc

,t−Fc
αc (Y c

αc
/Z(c)). (3)

The ordinary Dolbeault cohomology for an orbifold is given by (cf. [25])

H ∗,∗(Y/G) ∼= H ∗,∗(Y )G. (4)

Clearly, the orbifold Hodge numbers can now be regarded as the dimensions of the corre-
spondingorbifold cohomology groups(cf. [29,30])

H ∗,∗(Y, G) =
∑
c∈G∗
⊕Nc

αc=1 H ∗,∗(Y c
αc

/Zc){Fc
αc
}. (5)

Here and below we adopt the convention that ifV = ⊕s,t∈ZV s,t is a bigraded vector space,
thenV {n} is the bigraded vector space with(V {n}s,t ) = V s−n,t−n.
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It is convenient to form the generating function of bigraded spaces

H(Y, G; x, y) =
∑
s,t

H s,t (Y, G)xsyt ,

whose graded dimension is given by the orbifold Hodge polynomial

h(Y, G; x, y) =
∑
s,t

hs,t (Y, G)xsyt .

Then, we can rewrite the definition of orbifold cohomology groups as

H(Y, G; x, y) =
∑
c∈G∗

Nc⊕
αc=1

H(Y c
αc

/Zc; x, y){Fc
αc
}

=
∑
c∈G∗

Nc⊕
αc=1

H(Y c
αc

/Zc; x, y)(xy)F
c
αc . (6)

For later use, we define theorbifold virtual Hodge polynomial

e(Y, G; x, y) =
∑
s,t

(−1)s+t hs,t (Y, G)xsyt .

We also define the usual virtual Hodge polynomial for the Hodge numbershs,t (Y )associated
to smoothY by lettinge(Y ; x, y) =∑s,t (−1)s+t hs,t (Y )xsyt .

2.3. The definition of orbifold virtual Hodge numbers

We now indicate how to extend the above definitions to the case of smooth quasi-projective
varieties by using Deligne’s theory of mixed Hodge structures [9]. Recall that a (pure)Hodge
structureof weightm on a complex vector spaceH with a real structure is a direct sum
decomposition

H = ⊕
s+t=m

Hs,t

such thatH̄ s,t = Ht,s for all pairs(s, t). A mixed Hodge structure(MHS) onH consists
of two filtrations

0⊂ · · · ⊂ Wm−1 ⊂ Wm ⊂ Wm+1 ⊂ · · · ⊂ H,

the ‘weight filtration’, and

H ⊃ · · · ⊃ Fp−1 ⊃ Fp ⊃ Fp+1 ⊃ · · · ⊃ 0,

the ‘Hodge filtration’, such that the filtration induced by the latter onGrm(W∗) = Wm/Wm−1

defines a Hodge structure of weightm for eachm. Define

I s,t = F s ∩Ws+t ∩

F t ∩Ws+t +

∑
i≥2

F t−i+1 ∩Ws+t−i


 ,
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ThenI s,t ⊂ Ws+t maps isomorphically to the(s, t) component inGrs+t (W∗). One can
show that

F s(H) = ⊕
s′≥s
⊕
t
I s′,t (H), Wm(H) = ⊕

s+t≤m
Is,t (H).

It can be shown that{I s,t } is a splitting ofH characterized by the property that

I s,t ∼= I t,s

(
mod ⊕

s′<s,t ′<t
I s′,t ′

)

(cf. [9]). We will refer to this splitting as the canonical splitting. Define

hs,t (H) = dim I s,t (H).

Let V = ⊕k≥0V
k be a graded vector space with dimV k <∞ for all k. Assume that each

V k is endowed with an MHS. We will refer to such a space as agraded vector space with
MHS. Thevirtual Hodge numbersand thevirtual Hodge polynomialof V are defined by

es,t (V ) =
∑
k≥0

(−1)khs,t (V k), ex,y(V ) =
∑
s,t

es,t (V )xsyt .

Alternatively, we have the splitting:

V = ⊕
k≥0
⊕
s,t

I s,t (V k).

Consider the generating function

ex,y,z(V ) =
∑
k≥0

∑
s,t

dim I s,t (V k)xsyt zk.

Thenex,y(V ) = ex,y,−1(V ). We will use the following convention: for a graded vector
space with MHSV = ⊕k≥0V

k and a positive integern, V {n} is the graded vector space
with MHS such that for eachk,

Wm(V k{n}) = Wm−2n(V
k{n}), Fp(V k{n}) = Fp−n(V k{n}).

It is straightforward to see thates,t (V {n}) = es−n,t−n(V ), and so

ex,y(V {n}) = (xy)nex,y(V ).

Deligne [9] has shown that for an arbitrary complex algebraic varietyY , the cohomology
Hk(Y ) carries an MHS which coincides with the classical pure Hodge structure in the case
of smooth projective varieties. Hence one can define thevirtual Hodge numberof Y :

es,t (Y ) = es,t (H ∗(Y ))

and thevirtual Hodge polynomialof Y :

e(Y ; x, y) = ex,y(H
∗(Y )).

Assume that(Y, G) is a pair consisting of a smooth quasi-projective varietyY and a finite
subgroupG of automorphisms ofY . Then by functorial property, there is an induced action
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of G on the MHS onH ∗(Y ) by automorphisms. By taking the invariant parts, we obtain
an MHS on eachHk(Y/G). One can also achieve this by taking a smooth compactification
Ȳ such thatD = Ȳ − Y is a divisor with normal crossing singularities and such that the
G-action extends tōY . Then the MHS onH ∗(Y/G) is obtained by using(Ω∗Y 〈D〉)G, the
invariant part of the complex of differential forms with logarithmic poles. Using the above
MHS onH ∗(Y/G), we can now defineep,q(Y/G). Similar to the closed case (cf. (3)), we
define theorbifold virtual Hodge numberas follows:

es,t (Y, G) =
∑
c∈G∗

Nc∑
αc=1

es−Fc
αc

,t−Fc
αc (Y c

αc
/Z(c)).

We also define theorbifold virtual Hodge polynomial:

e(Y, G; x, y) =
∑
s,t

es,t (Y, G)xsyt .

It is clear thate(Y, G; x, y) is the virtual Hodge polynomial of

H ∗(Y, G) =
∑
c∈G∗

N⊕
αc=1

H ∗(Y c
αc

/Z(c)){Fc
αc
}

(cf (5)), where both sides are understood as graded vector spaces with MHS.

Remark 2.2. One can replaceH ∗(Y ) by the cohomology with compact supportH ∗c (Y ) in
the above definitions.

3. The orbifold Hodge numbers of wreath product orbifolds

In this section, we calculate explicitly the ordinary and orbifold Hodge numbers of wreath
product orbifoldsYn/Gn associated to an even-dimensional orbifoldY/G.

3.1. Two simple lemmas

Let V = ⊕s,t∈Z+V s,t be a bigraded complex vector space, such that dimV s,t <∞ for
all s, t , whereZ+ is the set of non-negative integers. We introduce the generating function

hx,y(V ) =
∑

s,t∈Z+
(dimV s,t )xsyt .

For example, whenV is the total Dolbeault cohomology groupH(Y), thenhx,y(V ) is its as-
sociated Hodge polynomialh(Y ; x, y). WhenV is the total orbifold Dolbeault cohomology
groupH(Y, G), thenhx,y(V ) is its associated orbifold Hodge polynomialh(Y, Z; x, y). It
is actually more convenient to work withex,y(V ) = h−x,−y(V ). It is easy to see that

ex,y(V1⊕ V2) = ex,y(V1)+ ex,y(V2), ex,y(V1⊗ V2) = ex,y(V1)ex,y(V2).
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The graded symmetric algebra ofV is by definition

S(V ) = T (V )/I,

whereT (V ) is the tensor algebra ofV , I is the ideal generated by elements of the form

v ⊗ w − (−1)(s+t)(p+q)w ⊗ v, v ∈ V s,t , w ∈ V p,q .

The bigrading onV induces a bigrading onT (V ) and also onS(V ), and henceex,y(S(V ))

makes sense. Note that for bigraded vector spacesV1 and V2, we haveS(V1 ⊕ V2) ∼=
S(V1)⊗ S(V2). Consequently,

ex,y(S(V1⊕ V2)) = ex,y(S(V1))ex,y(S(V2)). (7)

By introducing a formal variableq to count the degree of symmetric power, we can write
formally S(qV) = ∑

n≤0S
n(V )qn. By breakingV into one-dimensional subspaces, one

can easily prove the following.

Lemma 3.1. For any bigraded vector spaceV = ⊕s,t≥0V
s,t with dimV s,t < ∞ for all

pairs (s, t), we have

∑
n≥0

ex,y(S
n(V ))qn =

∏
s,t

1

(1− xsytq)e
s,t (V )

,

wherees,t (V ) = (−1)s+t dimV s,t .

For a formal power series
∑

r>0Vrq
r , where eachVr is a bigraded vector space of weight

r such that dimV
s,t
r <∞, define

S

(∑
r>0

Vrqr

)
=
∑
m≥0

∑
∑m

j=1 jmj=m

qm ⊗m
j=1 Smj (Vj ).

Formally, we have

S

(∑
r>0

Vrq
r

)
= ⊗

r>0
S(Vrq

r)

and

ex,y

(∑
r>0

Vrq
r

)
=
∑
r>0

ex,y(Vr)q
r .

Then, the next lemma follows from Lemma 3.1.

Lemma 3.2. For a sequenceVn of bigraded vector spaces, we have the following formula:

ex,y

(
S

(∑
n>0

Vnq
n

))
=
∏
n>0

∏
s,t

1

(1− xsytqn)e
s,t (Vn)

.
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Remark 3.1. Using the canonical splitting, it is fairly straightforward to generalize Lemmas
3.1 and 3.2 to the case of vector spaces with MHS.

3.2. The main theorems

SinceG∗ is a normal subgroup of the wreath productGn = Gn o Sn, it is easy to see by
(4) that

H(Yn/Gn; x, y) ∼= H(Yn; x, y)G
noSn ∼= Sn(H(Y ; x, y)G) ∼= Sn(H(Y/G; x, y)).

WhenY is a compact complex manifold, this is an isomorphism of bigraded vector spaces;
whenY is a quasi-projective smooth variety overC, this is an isomorphism of graded vector
spaces with MHS. As a consequence of Lemma 3.1 and Remark 3.1, we obtain the following
proposition.

Proposition 3.1. If Y is a compact complex manifold or a quasi-projective smooth variety,
and G is a finite subgroup of automorphisms on Y, then we have the following formula:

∑
n≥0

e(Y n/Gn; x, y)qn =
∏
s,t

1

(1− xsytq)e
s,t (Y/G)

.

The first main result of this paper is the following theorem.

Theorem 3.1. Given a compact complex manifold or a smooth quasi-projective variety Y
of even complex dimension d, acted on by a finite group G with integer shifts, we have the
following formula for the orbifold Hodge numbers:

∞∑
n=1

e(Y n, Gn; x, y)qn =
∞∏

r=1

∏
s,t

1

(1− xsytqt (xy)(r−1)d/2)e
s,t (Y/G)

. (8)

Proof. We first compute the shiftsFc for the orbifoldYn/Gn associated to a conjugacy
classc in Gn. Consider the typical class containing

g o σn = ((g, 1, . . . , 1), (12· · · n)),

whereg ∈ G. Recall from the previous section that a fixed point inYn by the action ofg oσn

is of the form(x, . . . , x), wherex ∈ Yg. Since, the calculation can be done locally, we will
assume that we take local coordinates(z1, . . . , zd) near a pointx ∈ Yg such that the action
is given by

g(z1, . . . , zd) = (e2π
√−1θ1z1, . . . , e2π

√−1θr zr , zr+1, . . . , zd).

Equivalently,g is locally given by the diagonal matrix diag(e2π
√−1θ1, . . . , e2π

√−1θd ),
where θr+1 = · · · = θd = 0. Then onYn near(x, . . . , x), g o σn is given by a block
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diagonal matrix with blocks of the form




0 1 0 . . . 0

0 0 1 . . . 0

· · · . . . . . . . . . 0

0 0 0 . . . 1

e2π
√−1θj 0 . . . . . . 0




The characteristic polynomial of this matrix isλn − e
√−1θj , hence it has eigenvalues

λjk = e2π
√−1(θj+k)/n, k = 0, . . . , n− 1.

Notice thatλjk = 1 if and only if θj = k = 0. So the shift for the component of(Y n)goσn

containing(x, . . . , x) is given by

Fgoσn(x, . . . , x) =
r∑

j=1

n−1∑
k=0

θj + k

n
+ (d − r)

n−1∑
k=1

k

n

=
r∑

j=1

θj + (n− 1)d

2
= Fc

αc
+ (n− 1)d

2
.

Here, we have assumed thatx ∈ Yg lies in the componentYg
αc (αc = 1, . . . , Nc) andFc

αc
is

the shift for the componentY c
αc

/ZG(c).
For a general conjugacy class containing an elementa of type

ρ = {mr(c)}r≥1,c∈G∗ ,

where
∑

r,crmr (c) = n, the description of the fixed-point set(Y n)a given in (2) implies
that the components for(Y n)a can be listed as

(Y n)a{mr,c(αc)} =
∏
r,c

Nc∏
αc=1

Smr,c(αc)(Y c
αc

/ZG(c)),

where(mr,c(1), . . . , mr,c(Nc)) satisfies
∑Nc

αc=1 mr,c(αc) = mr(c). Then, the shift for the
component(Y n)a{mr,c(αc)} is given by

F{mr,c(αc)} =
∑
r,c

Nc∑
αc=1

mr,c(αc)

(
Fc

αc
+ (r − 1)d

2

)
. (9)

By using (2), (6), (7) and (9), we have
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n≥0

H(Yn;Gn; x, y)qn

=
∞∑

n=0

⊕
{mr(c)}∈Pn(G∗)

⊗
r,c
⊗Nc

αc=1 H
(
Smr,c(αc)(Y c

αc
/ZG(c)); x, y

)
{F{mr,c(αc)}}qn

=
∞∑

n=0

⊕
{mr(c)}∈Pn(G∗)

⊗
r,c
⊗Nc

αc=1S
mr,c(αc)

(
H(Y c

αc
/ZG(c); x, y)

{
Fc

αc
+ (r − 1)d

2

})
qn

=
∑
{mr(c)}

⊗
r,c

Smr,c

(
⊕Nc

αc=1H(Y c
αc

/ZG(c); x, y)

{
Fc

αc
+ (r − 1)d

2

}
qr

)

=
∑
{mr }
⊗
r
Smr

(
⊕
c
⊕Nc

αc=1 H(Y c
αc

/ZG(c); x, y)

{
Fc

αc
+ (r − 1)d

2

}
qr

)
,

where we let

mr =
∑

c

mr(c) =
∑
{mr }
⊗

r≥1
Smr

(
H(Y, ZG; x, y)

{
(r − 1)d

2

}
qr

)

= S


∑

r≥1

H(Y, G; x, y)

{
(r − 1)d

2

}
qr


 .

Namely, we have proved that

∑
n≥0

H(Yn, Gn; x, y)qn = S

(∑
r>0

H(Y, G; x, y)(x, y)(r−1)d/2qr

)
,

which implies immediately the theorem by means of Lemma 3.2. h

Remark 3.2. WhenG is trivial andY is an algebraic surface, Theorem 3.1 recovers the
orbifold Hodge numbers for the symmetric productYn/Sn which was calculated in [16,30].
On the other hand, if we setx = y = 1 we recover the orbifold Euler numbers forYn/Gn

which was first computed in [27] for any topological spaceY .

Remark 3.3. In the above, we have constrained ourselves to the case that the shift numbers
are integers. Physicists are also interested in the case of fractional shift numbers (see, e.g.,
[29]). It is straightforward to generalize our result.

3.3. Some consequences

We assume thatY is a quasi-projective surface acted upon by a finite groupG, and
thatX is a resolution of singularities of the orbifoldY/G. We denote byX[n] the Hilbert
scheme ofn points onX. It is well known (cf. [13,15]) that the Hilbert–Chow morphism
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X[n] → Xn/Sn is a resolution of singularities. Indeed it is crepant. We have the following
commutative diagram [27]

X[n] → Xn/Sn

↓ ↓
Yn/Gn

∼=← (Y/G)n/Sn

which implies that the Hilbert schemeX[n] is a resolution of singularities of the orbifold
Xn/Gn.

As calculated in [8,17], the Hodge numbers for the Hilbert schemeX[n] are given by the
following formula:

∞∑
n=1

e(X[n]x; y)qn =
∞∏

r=1

∏
s,t

1

(1− xsytqr (xy)r−1)e
s ,t (X)

.

Here and below we use the cohomology with compact supports.
By comparing with Theorem 3.1 we obtain the following theorem which provides us

a large class of higher dimensional examples which verify the orbifold Hodge number
conjecture (cf. [4,5,26,29]). The assumption of the theorem is necessary by Remark 2.1.

Theorem 3.2. Let Y be a smooth quasi-projective surface which admits a G-action with
only isolated fixed points. Assume thatπ : X→ Y/G is a resolution such thate(X; x, y) =
e(Y, G; x, y). LetX[n] be the Hilbert scheme of n points ofX. Then for allr, s we have

hr,s(X[n] = hr,s(Y n, Gn).

Remark 3.4. WhenG is trivial andX equalsY , we recover the theorem of [16,30]. We
will see later many interesting examples arise whenG is not trivial.
More generally ifY has dimension greater than 2, there is no such a favorable resolution
as Hilbert scheme forYn/Gn. Nevertheless, we have the following interesting corollary of
Theorem 3.1. Here we assume that the shifts are integers for the orbifoldY/G so that its
orbifold Hodge numbers are well defined.

Corollary 3.1. Let Y be a smooth variety of even dimension acted on by a finite groupG

of automorphisms, andπ : X → Y/G is a resolution such thaths,t (X) = hs,t (Y, G) for
all s, t, then for alls, t we have

hs,t (Xn, Sn) = hs,t (Y n, Gn).

4. Examples and applications

In this section we provide various concrete examples which satisfy the assumptions of
Theorems 3.1 and 3.2. We also give explicit conjectures on the elliptic genera for the wreath
product orbifolds.
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4.1. Various examples

Example 4.1. WhenG is trivial andX equalsY , this gives us the example of symmetric
products [15,30].

Example 4.2. Y is C2 is a finite subgroup ofSL2(C), andX is the minimal resolution
of C2/G. The exceptional fiber consists of|G∗| − 1 irreducible components which are
(−2)-curves (cf., e.g., [19]). We have

hs,t (X) =




1, s = t = 0,

|G∗| − 1, s = t = 1,

0, otherwise.

On the other hand, for any non-trivial conjugacy classc ∈ G∗, the corresponding shift is 1
and thus makes a contribution toh1,1(C2, G) which results thath1,1(C2, G) = |G∗|−1. The
otherhs,t (C2, G) can be also seen to coincide withhs,t (X). This example has played a key
role in the connections between the wreath product orbifolds and the vertex representations
of affine and toroidal Lie algebras [14,27,28].

Example 4.3(Bryan–Donagi–Leung [7]). LetY be an abelian surface (two-dimensional
torus). TheZ2-action induced by the involutionτ : x → −x has 16 fixed points, at each
of which the shiftFτ is 1. So the twisted sectors contribute an extra 16 toh1,1. Write
Y = C2/L for some latticeL, and let(z1, z2) be the linear coordinates onC2. ThenH ∗,∗Y
is generated by dz1, dz̄1, dz2, dz̄2. The action ofτ just takes dzj to−dzj , etc. Hence, it is
clear that

H ∗,∗(Y )Z2 ∼= C⊕ C dz1 ∧ dz2⊕ (⊕2
j,k=1C dzj ∧ dz̄k)⊕ C dz̄1 ∧ dz̄2

⊕C dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2.

Therefore,

hs,t (Y,Z2) =




1, s = t = 0,

20, s = t = 1,

1, s = 2, t = 0 or s = 0, t = 2,

1, s = t = 2,

0, otherwise.

The minimal resolutionX→ Y/± 1 is a crepant resolution, whereX is a K3 surface. This
is the famous Kummer construction. By the well known Hodge numbers of a K3 surface,
we havehs,t (X) = hs,t (Y,Z2) for all s, t .

Example 4.4. LetZ3 act onCP2 by

α · [z0 : z1 : z2] = [αz0 : α−1z1 : z2],
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whereα is a generator ofZ3 and identified with a cubic root of unity on the right-hand side.
This action has three fixed points:p0 = [1 : 0 : 0], p1 = [0 : 1 : 0], andp2 = [0 : 0 : 1].
At these points, the weights of the action are (1,2), (2,1), and (1,2) respectively. It is then
straightforward to see that forg 6= 1 we have

F9 = 1
3 + 2

3 = 1.

Therefore,

H ∗,∗(CP2,Z3) = H ∗,∗(CP2)
Z3 ⊕⊕2

j=0H
∗,∗(pj )

Z3{1} ⊕ ⊕2
j=0H

∗,∗(pj )
Z3{1},

and hence

hs,t (CP2,Z3) =




1, s = t = 0,

7, s = t = 1,

1, s = t = 2,

0, otherwise.

The minimal resolutionX = ĈP2/Z3 is obtained by replacing each singular point by a
string of two(−2)-curves, each of which contributes 1 toh1,1, henceh1,1 of ĈP2/Z3 is 7.
This resolution is a crepant resolution.

Example 4.5. Let n > 2 be an odd number. Consider the action ofZn onCP3 given by

α · [z0 : z1 : z2 : z3] = [z0 : z1 : αz2 : α−1z3],

whereα is a generator ofZn. It has a fixed line{[z0 : z1 : 0 : 0]} and two isolated fixed
points [0 : 0 : 1 : 0], and [0 : 0 : 0 : 1]. LetYm,n be the Fermat surface defined by

zmn
0 + zmn

1 + zmn
2 + zmn

3 = 0

in CP3. The above action preservesYm,n, with mn isolated fixed points:

[1 : e(2k+1)π
√−1/(mn) : 0 : 0], k = 0, . . . , mn− 1.

Note the action is semi-free, i.e. the stabilizers are either trivial or the whole groupZn. Near
each of the fixed points, say [1 :eπ

√−1/(mn) : 0 : 0], Ym,n is given by the equation

1+ un
1 + un

2 + un
3 = 0,

whereuj = zj /z0. We can use (u2, u3) as local coordinates, thenZn acts with weight
(1,−1), i.e.Zn acts locally by matrices inSL(2,C). Therefore,Ym,n/Zn admits a crepant
resolution obtained by replacing each isolated singular point with a string ofn− 1 copies
of (−2)-curves.

Example 4.6. Denote now byβ a generator ofZ4. Consider theZ4-action onCP3 given
by

β · [z0 : z1 : z2 : z3] = [z0 : z1 :
√−1z3 :

√−1z2].
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Combined with theZn-action in Example 4.5, we get an action of the binary dihedral group
D∗n onCP3 which preservesY4m,n. By the same method as in Example 4.5 one can find the
fixed points and sees thatY4m,n/D

∗
n admits a crepant resolution.

Example 4.7. The method of Examples 4.5 and 4.6 can be generalized to other finite
subgroups ofSL(2,C). Given such a groupG, let it act onC4 on the last two factors. This
action induces an action onCP3. Now consider a smooth hypersurfaceY defined by an
equation of the form

f (z0, z1)+ g(z2, z3) = 0,

wheref andg are two homogeneous polynomials of the same degrees, andg is an invariant
polynomial forG. Using the explicit description of theG-action onC2 and the invariant
polynomials (see, e.g., [21]), one can find many examples which admits crepant resolu-
tions. One should be able to find more examples by considering complete intersections in
(weighted) projective spaces.

Example 4.8. More complicated examples can be found in two papers by Barlow [2,3],
e.g., the quotient of a Hilbert modular surface byZ2 orD10, or the quotient of a complete in-
tersection of four quadrics inCP6 by a group of order 16, or the quotient of a Godeaux–Reid
surface by an involution.

4.2. Conjectures on elliptic genera of wreath product orbifolds

Let Y be a compact Kähler manifold of complex dimensiond, denote byTY(resp.T ∗Y )
its holomorphic tangent (resp. cotangent) bundle. Consider the formal power series of vector
bundles:

Eq,y(Y ) = y−d/2 ⊗
n≥1

(3−yqn−1(T
∗Y )⊗Λ−y−1qn(TY)⊗ Sqn(T ∗Y )⊗ Sqn(TY)).

If we write

Eq,y(Y ) =
∑

m≥0,l

qmylEm,l(Y ),

we easily see that eachEm,l is a holomorphic bundle of finite rank, hence one can consider
its Riemann–Roch number

c(m, l) = χ(Em,l(Y )) =
∑
k≥0

(−1)kdimHk(Y, Em,l(Y )).

The generating function

χ(Y ; q, y) =
∑

m≥0,l

qmylχ(Em,l(Y )) = χ(Eq,y(Y ))

is called theelliptic genusof Y (cf. [18,22]). In the very important special case whenq = 0,
one recovers the Hirzebruch genus:
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E0,y(Y ) = y−d/2Λ−y(T
∗Y ), χ(Y ;0, y)

= y−d/2χ−y(Y ) = y−d/2
∑
s,t≥0

(−1)t (−y)shs,t (Y ).

We do not know of a good mathematical formulation of elliptic genera for orbifolds.
However, physicists have interpreted elliptic genera as partition functions of supersymmetric
sigma models, which makes sense also for orbifolds (cf. [11,22] and references therein).
Based on physical arguments and the description of fixed-point sets for the symmetric group
action onYn, Dijkgraaf et al. [11] derived a formula for the elliptic genera of the symmetric
productsSn(Y ) in terms of that ofY . In the case of a K3 surface or an abelian surface, they
also conjectured that the same formula should compute the elliptic genera of the Hilbert
schemes. Their method, if it can be made mathematically rigorous, should also provide the
proof of the following conjectures with suitable modifications. (In the following we denote
by χ(Y, G; q, y) the elliptic genera of an orbifoldY/G.)

Conjecture 4.1. Let Y be a KählerG-manifold. If we write the elliptic genus forY/G as
χ(Y, G; q, y) =∑m≥0,lc(m, l)qmyl , then the elliptic genus for the wreath product orbifold
Yn/Gn is given by the following formula:

∞∑
N=0

pNχ(YN, GN ; q, y) =
∏

n>0,m≥0,l

1

(1− pnqmyl)c(n,m,l)
.

Conjecture 4.2. LetY be a KählerG-surface. We assume thatX is a resolution of singular-
ities ofY/G such thatχ(Y, G; q, y) = χ(X; q, y). Thenχ(Y n, Gn; q, y) = χ(X[n]; q, y)

for all n.

WhenG is trivial, one recovers the symmetric product situation as in [11]. In this case,
theq = 0 version of Conjecture 4.1 has been verified in [30] as a corollary of the calculation
of orbifold Hodge numbers. Similarly, our results in Section 3 can be viewed as supporting
evidence for the above conjectures in the general setup of wreath product orbifolds.

Note added. In a recent remarkable paper [6], Borisov and Libgober have introduced the
mathematically rigorous notion of orbifold elliptic genera among other things, and verified
our Conjecture 4.1.
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