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Abstract

We prove that the wreath product orbifolds studied earlier by the first author provide a large class
of higher dimensional examples of orbifolds whose orbifold Hodge numbers coincide with the
ordinary ones of suitable resolutions of singularities. We also make explicit conjectures on elliptic
genera for the wreath product orbifolds. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the study of orbifold string theory, Dixon et al. [12] introduced the notion of orbifold
Euler number for a smooth manifollacted on by a finite grou@ and raised the question
on the existence of a resolution of singularitiesdf G whose ordinary Euler number
coincides with the orbifold Euler number. The orbifold Euler number has subsequently
been interpreted as the Euler number for equivarigrtheory (cf. [1]). The notion of
orbifold Euler number has been further refined to give rise to the notion of orbifold Hodge
numbers [26,29] and more generally the stringy Hodge numbers [5]. The orbifold Hodge
numbers of an orbifold are then conjectured to coincide with the ordinary Hodge numbers
of a suitable resolution of the orbifold. For recent related development, see [4,5,10,24] and
the references therein.
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A well-known series of examples with such a property is provided by the symmetric
product of a surface which admits a resolution of singularities given by the Hilbert scheme
of points. In this case the orbifold Euler number calculated by Hirzebruch and Héfer [19]
matches with the Euler number of the Hilbert scheme found earlier by Géttsche [15]. It is
further shown by Géttsche [16] that the orbifold Hodge numbers matches with the Hodge
numbers of the Hilbert scheme calculated by Géttsche and Soergel [17] (see also [8]). The
same method has been used by the second author [30], also for the calculation for higher
dimensional complex manifolds.

The wreath product orbifolds, which are generalizations of the symmetric products, were
shown by the first author [27] (see also [14,28]) to have deep connections with Hilbert
schemes of surfaces and vertex representations of infinite dimensional Lie algebras. More
explicitly, if Y is a smooth manifold acted upon by a finite gradpthen there exists a
natural action on theth Cartesian product” by the wreath produof, (which is the
semidirect product of the symmetric grosp and the product grou,). The orbifold
Euler number fo¥” / G,, has been explicitly calculated ioc. cit. If in addition we assume
thatY is a quasi-projective surface atklis a resolution of singularities of the orbifold
Y /G, then the following commutative diagram

xH - xns,
I N I
Y"/G, < (Y/G)'/S,

implies that the Hilbert schem®l”] is a resolution of singularities of the orbifokt’ /G ,.

It has been shown [27] that if the ordinary Euler numbeXoéquals the orbifold Euler
number ofY /G then the ordinary Euler number af”] equals the orbifold Euler number
of X" /G, for all n. WhenG is the trivial group and( equalsY, one recovers the case of
symmetric products.

The purpose of the present paper is to point out that the wreath product orbifolds also
provide a large class of new higher dimensional examples which verify the orbifold Hodge
number conjecture. More precisely, we show that it a quasi-projective surface aid
is a resolution of singularities af/ G such that the ordinary Hodge numbersxofoincide
with the orbifold Hodge numbers of the orbifoly G, then the orbifold Hodge numbers of
the orbifoldY” /G, coincide with the Hodge numbers of the Hilbert schex#d, which is
a resolution of singularities. Our proof rely on the analysis of fixed-point set structures of
the wreath product action df” (cf. [27]). As in [30] our calculation of the orbifold Hodge
numbers fory” /G,, actually works for any comple&-manifold of even dimension.

In a very recent paper [7], Bryan et al. pointed out a series of examples (besides the
well-known symmetric products) verifying the orbifold Hodge numbers conjecture. It turns
out that their examples correspond to our special case Whsran abelian surface; is

1 Seeing the math review (99¢:14022) of [16] but not the paper itself when he was writing [30], the second author
got the wrong impression that Gottsche proved his result by establishing the strong McKay correspondence for
symmetric products. This misunderstanding has been clarified when we actually looked into the paper [16] during
the preparation of the present paper.
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Z», andX is the Kummer K3 surface. They remarked that most examples in literature are
lower dimensional and no other higher dimensional examples were known to them. Their
remarks are largely responsible for us to decide to write up the results on the wreath product
orbifolds which have been known to us for some time. We do not know any other higher
dimensional examples which verify the orbifold Hodge number conjecture.

To conclude we also make two explicit conjectures on elliptic genera for wreath product
orbifolds. These are motivated and in turn generalize the work of Dijkgraaf et al. [11] on
elliptic genera for symmetric products.

The layout of this paper is as follows. In Section 2, we recall the fixed-point set structures
of the wreath product action, and the definition of the orbifold Hodge numbers, for both
the compact and non-compact situations. In Section 3, we prove our main results, Theorem
3.1 on the orbifold Hodge numbers of wreath product orbifolds and Theorem 3.2 on the
verification of orbifold Hodge number conjecture. In Section 4, we provide various examples
illustrating our main results and in addition formulate two conjectures on elliptic genera.

2. Preliminaries on the wreath product and orbifold Hodge numbers

In this section, we first review the definition of a wreath proddgt associated to a
finite groupG, and the descriptions of conjugacy classes and centralize6,f¢ef., e.g.,
[20,23]). We also describe fixed-point sets for the actio& pbn thenth Cartesian product
of a G-manifold, following [27]. We then recall the definition of orbifold Hodge numbers
(cf. [5,29)).

2.1. The wreath product action af*

Let G be a finite group and denote I6y, the set of conjugacy classesGf Let G* =
G x --- x G be the direct product of copies ofG. Denote by £] the conjugacy class of
g € G. The symmetric group, acts onG" by permuting the: factors:s(g1, ..., gx) =
(85-1(1)s -+ +» 85~ 1(m))- The wreath productG, = G @ S, is defined to be the semidirect
productG” x S, of G" ands,,, namely the multiplication o, is given by(g, s)(h, 1) =
(g - s(h), st, whereg, h € G",s,t € S,. Note, whenG is the trivial one-element group
the wreath product, reduces taS,, and whenG is Z; the wreath producG, is the
hyperoctahedral group, the Weyl group of type

Givena = (g, s) € G, whereg = (g1, ..., g»), We writes € S, as a product of disjoint
cycles:ifz = (iy, .. ., i) isone of them, theycle-producg;, g;,_, - - - gi, 0fa corresponding
to the cyclez is determined by andz up to conjugacy. For eache G, and each integer
r > 1, letm,(c) be the number of-cycles ins whose cycle-product lies in. Denote by
p(c) the partition havingn,(c) parts equal to-(r > 1) and denote by = (p(c))ceq,
the corresponding partition-valued function 6h). Note that||p|| = ZceG,JP(CN =
ZceG*plrmr (c) = n, where|p(c)| is the size of the partitiop(c). Thus we have defined
amap fromG, to P,(G.), the set of partition-valued functign= (o (c))cec, 0N G such
that||p|| = n. The functionp or the datgm.(c)}, . is called thetypeof a = (g, s) € G,.
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DenoteP(Gy) = Y _,-oPn(G). Itis well known (cf., e.g., [20,23]) that two elements in
G, are conjugate to each other if and only if they have the same type.

Let us describe the centraliz8g;, (@) of a € G, (cf. [20,23,27]). First, we consider the
typical case that has one:-cycle. As the centralizers of conjugate elements are conjugate
subgroups, we may assume tha ofthe forma = ((g, 1, ..., 1), ), wherer = (12---n).
Denote byZé(g), or Zé" (g) when it is necessary to specify the following diagonal
subgroup ofG" (and thus a subgroup df,):

Z&() ={((h,...,h),1) € G"|h € Zg(g)}.

The centralizetZg, (a) of a in G, is equal to the prodch(A;(g) - {a), where(a) is the
cyclic subgroup of5, generated by.

Take a generic elemenat = (g,s) € G, of type p = (p(c))cec,, Wherep(c) has
m,(c)r-cycles(r > 1). We may assume (by taking a conjugation if necessary) that the
m,(c) r-cycles are of the form

gur(c) = ((gﬂ la ey 1)7 (iltla L) iur)), 1 S u S mr(c)a g €cC.

Denoteg, (¢) = ((g,1,...,1), (12---r)). Throughout the pape‘f,[c’, is understood as the
product] .., ,~1- The centralizeZg, (a) of a € G, is isomorphic to a direct product of
the wreath products

[ [Z6, (2 () 1 Sme)-

c,r

FurthermoreZg, (g, (c)) is isomorphic tozé’ (2) - (gr(0)).

ForaG-space’, we define an action @, onY” as follows. Givera = ((g1, ..., gn), 5),
we let
a-(x1, ..., Xp) = (81X5-1(1)s - - - » 8nXs-1(y))s (1)
wherexy, ..., x, € Y.
Next, we recall the description of the fixed-point ¢t )“ for a € G, (cf. [27]). Let us
first look at the typical case = ((g, 1,..., 1), t) € G,. Note that the centralizer group

Zg(g) preserves thg-fixed point setX$. The fixed point set is
XM ={(x,...,x) € Y'x =gx,

which can be naturally identified with$. The action oG, () on (Y")“ can be identified
canonically with that ofZ (g) on Y8 together with the trivial action of the cyclic group
(z). Thus(X™")¢/Zg, (a) can be identified witlX¢ /Z (g).

All Zs(g) are conjugate and aN¢ are homeomorphic to each other for different rep-
resentativeg in a fixed conjugacy class € G.. Also the orbit spac&8/Z¢(g) can be
identified with each other by conjugation for different representativesiofc € G,. We
agree to denot&g (g) (resp.Y8,Y8/Zs(g)) by Zg(c) (resp.Y<, Y/ Zs(c)) by abuse of
notations. Similar remarks apply to other situations below when the choice of representatives
in a conjugacy class is irrelevant.
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For an elementt € G, of type {m,(c)}, the fixed-point se{Y")? can be naturally
identified with]'[c‘,(Y")m"“'). Furthermore, the orbit spa¢g”)“/Zg, (a) can be naturally
identified with

[]s" ¢/ 26, 2
whereS™ (X) denotes the:th symmetric produck™/S,,.

2.2. Definition of orbifold Hodge numbers

Let Y be a compact complex manifold of complex dimensibacted on by a finite
group G of automorphisms. For each conjugacy class [g] € G, let Yf, Yf,( be
the connected components of the fixed-point}s&t Zaslow [29] defined a shift number
F¢ associated to each componéiitas follows. On the tangent space to each pointig
acts as a diagonal matrix dieg™ =11, ..., e27vV=1%) where 0< 6; < 1. Then

8
th = Z@j.
=1

In general F$ is just a rational number. However, there are many occasions when it is
an integer, e.g., when g acts on the tangent space by a ma8IxinC).

Remark 2.1. In the case whef is a complex surface, the shift; is an integer only if

the componenfy is either an isolated point or two-dimensional. Indeed a finite subgroup
G of GL(2, C) acting onC? has integer shifts if and only & lies inSL(2, C). That is, the
shift F$ = 61 + 6, is an integer if and only if def = e27V-161+62) — 1.

In the case all the shifts are integers, titbifold Hodge numbersf the orbifoldY /G
are defined to be

Ne
RY,.G) =Y Y h Rt =R (vg 1 z(0)). 3)
ceGyao=1
The ordinary Dolbeault conomology for an orbifold is given by (cf. [25])
H**(Y/G) = H**(Y)°. (4)

Clearly, the orbifold Hodge numbers can now be regarded as the dimensions of the corre-
spondingorbifold cohomology group&f. [29,30])

H**(Y,G)= Y @b H** (VS /ZFE ). (5)

ceGy

Here and below we adopt the convention that i= @,z V* is a bigraded vector space,
thenV {n} is the bigraded vector space with {n}*!) = Vs,
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It is convenient to form the generating function of bigraded spaces

H(Y,G:x,y) =Y H"'(Y,G)x'y',

st

whose graded dimension is given by the orbifold Hodge polynomial

h(Y,G;x,y) = Zh‘”()’, G)x*y'.

s,t
Then, we can rewrite the definition of orbifold cohomology groups as

Ne c c
H(Y,Gix,y) = Y © H(YG /Zesx, )IF)

o=
ceGy ¢

Nc c F(.‘
=> ® H(Y /Ze %, y) oy, (6)

o=
ceGy €

For later use, we define tloebifold virtual Hodge polynomial

e(Y,Gix,y) =Y (=D™Mh" (¥, G)xy.

s,t
We also define the usual virtual Hodge polynomial for the Hodge nurié¢¥ ) associated
to smoothy by lettinge(Y; x, y) = Zw(—1)-‘+fh5*f(Y)xsy’.

2.3. The definition of orbifold virtual Hodge numbers

We now indicate how to extend the above definitions to the case of smooth quasi-projective
varieties by using Deligne’s theory of mixed Hodge structures [9]. Recall that a (podgje
structureof weightm on a complex vector spadé with a real structure is a direct sum
decomposition

H — @ HS,T

s+t=m

such thatH** = H"* for all pairs(s, r). A mixed Hodge structuré@MHS) on H consists
of two filtrations

0OCc---CWu_1CWy CWpyy1C---CH,
the ‘weight filtration’, and
H>---DFPlo P Frtls. 50,

the ‘Hodgefiltration’, such that the filtration induced by the latteGop (W,) = W,,,/ W,,—1
defines a Hodge structure of weightfor eachm. Define

I = F N\ Wy 0| FT N Wygy + ZFHH N Wi |

i>2
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Then %' C Wy, maps isomorphically to thés, 1) component inGr,,(W,). One can
show that

FS(H)y= @ ®I''(H), Wn(H)= & I>'(H).

s/>st s+t<m

It can be shown thdt7**} is a splitting of H characterized by the property that

50 = Jts (mod o) Is'*’/)

s’/ <s,t' <t
(cf. [9]). We will refer to this splitting as the canonical splitting. Define
hSU(H) =dim IS (H).

Let V = @=0V* be a graded vector space with difi < oo for all k. Assume that each
v* is endowed with an MHS. We will refer to such a space gsa@led vector space with
MHS Thevirtual Hodge numberand thevirtual Hodge polynomiabf V are defined by

(V) =Y (=DFRIVE), e (V) =) e (V)xty
s,t

k>0

Alternatively, we have the splitting:

V — @ @IS,I(V]().
k>0s,t

Consider the generating function

ey (V) =Y Y dimr (Vh)x'y'2k,

k>0 s,t

Thene, (V) = e,y —1(V). We will use the following convention: for a graded vector
space with MHSV = @;-oV* and a positive integer, V {n} is the graded vector space
with MHS such that for each,

Wi (VE(R)) = Wi 2, (VEIRY),  FP(VEn}) = FP7"(Vi{n)).
It is straightforward to see thaf ;(V{n}) = ¢*~"'~"(V), and so
ex,y(V{n}) = (Xy)nex,y(v)'

Deligne [9] has shown that for an arbitrary complex algebraic vafiethe cohomology
H*(Y) carries an MHS which coincides with the classical pure Hodge structure in the case
of smooth projective varieties. Hence one can definevittieal Hodge numbeof Y

eM(Y) = e (H*(Y))
and thevirtual Hodge polynomiabf Y:
e(Y;x,y) = ex,y(H*(Y)).

Assume thatY, G) is a pair consisting of a smooth quasi-projective variegnd a finite
subgroupG of automorphisms of . Then by functorial property, there is an induced action
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of G on the MHS onH*(Y) by automorphisms. By taking the invariant parts, we obtain
an MHS on eacl#* (Y /G). One can also achieve this by taking a smooth compactification
Y such thatD = Y — Y is a divisor with normal crossing singularities and such that the
G-action extends to’. Then the MHS onf/*(Y/G) is obtained by usings2;:(D))¢, the
invariant part of the complex of differential forms with logarithmic poles. Using the above
MHS on H*(Y/G), we can now define”-4(Y/G). Similar to the closed case (cf. (3)), we
define theorbifold virtual Hodge numbeas follows:

Ne
Gy = ) ) e (g /2 (@),

ceGrac=1

We also define therbifold virtual Hodge polynomial
e(Y.Gix,y) =Y "' (Y. G)x'y".
s,t
Itis clear that(Y, G; x, y) is the virtual Hodge polynomial of
N ) .
H*(Y.G)= Y _ & H' (Y5 /Z(F,)

o=
ceGy ¢

(cf (5)), where both sides are understood as graded vector spaces with MHS.

Remark 2.2. One can replac&*(Y) by the cohomology with compact suppéff (¥) in
the above definitions.

3. The orbifold Hodge numbers of wreath product orbifolds

Inthis section, we calculate explicitly the ordinary and orbifold Hodge nhumbers of wreath
product orbifoldsV” / G,, associated to an even-dimensional orbifBldG.

3.1. Two simple lemmas

LetV = @, ez, V*' be a bigraded complex vector space, such thatldirh < oo for
all s, t, whereZ, is the set of non-negative integers. We introduce the generating function

hey(V)= Y (dimVoHxty',

S,IEZ+

For example, whei is the total Dolbeault cohomology grop(Y), theni, (V) isits as-
sociated Hodge polynomialY; x, y). WhenV is the total orbifold Dolbeault cohomology
groupH (Y, G), thenh, (V) is its associated orbifold Hodge polynomidlY, Z; x, y). It

is actually more convenient to work with (V) = h_ _,(V). Itis easy to see that

ex,y(vl @ V) = ex,y(vl) + ex,y(VZ)’ ex,y(vl ® V) = ex,y(vl)ex,y(v2)~
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The graded symmetric algebra Bfis by definition
S(V)=T\)/I,

whereT (V) is the tensor algebra df, I is the ideal generated by elements of the form
v w— ()Pt @v, ve VS we VPI.

The bigrading orV induces a bigrading ofi(V) and also or§(V), and hence, ,(S(V))
makes sense. Note that for bigraded vector spageand V>, we haveS(Vy & Vo) =
S(V1) ® §(V2). Consequently,

ex,y(S(Vl e V) = ex,y(S(Vl))ex,y(S(VZ))- (7)

By introducing a formal variablg to count the degree of symmetric power, we can write
formally S(qV) = }_,-05"(V)q". By breakingV into one-dimensional subspaces, one
can easily prove the following.

Lemma 3.1. For any bigraded vector spacé = &, ,~oV*' with dim V*' < oo for all
pairs (s, t), we have
1
Y ey S"N" = |l —F=
= ot (1 _ xsytq)c V)
wheree® (V) = (=1)*T dimV*1,

For aformal power seri€s,._,V,q", where eacly, is a bigraded vector space of weight
r such that din¥;"' < oo, define

s <Zvrqr) =D > 4" SV,

r>0 =057 jm;=m

Formally, we have

s (Zqu ) = 8 5(Vrg")

r>0
and
€x,y (ZWLI’) = Zex,y(vr)qr-
r>0 r>0

Then, the next lemma follows from Lemma 3.1.

Lemma 3.2. For a sequencé,, of bigraded vector spacewe have the following formula

" 1
€x,y (S <Zvnq )) = Hn(l_xsytqn)ef"(Vn)'

n>0 n>0s,1
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Remark 3.1. Using the canonical splitting, itis fairly straightforward to generalize Lemmas
3.1 and 3.2 to the case of vector spaces with MHS.

3.2. The main theorems

SinceG* is a normal subgroup of the wreath proddGt = G x S,,, itis easy to see by
(4) that

HY"/Gp;x,y) = HY"; x, )9S = S"(H(Y; x, »)9) = S"(H(Y/G; x, y)).

WhenY is a compact complex manifold, this is an isomorphism of bigraded vector spaces;
whenY is a quasi-projective smooth variety ov@rthis is an isomorphism of graded vector
spaces with MHS. As a consequence of Lemma 3.1 and Remark 3.1, we obtain the following
proposition.

Proposition 3.1. If Y is a compact complex manifold or a quasi-projective smooth variety
and G is a finite subgroup of automorphisms gnthén we have the following formula

1
n . n_
Ze(Y /Gn;x, ¥)q" = l—[ (1—xSylq)e"'¥/G)

n>0 s,t

The first main result of this paper is the following theorem.

Theorem 3.1. Given a compact complex manifold or a smooth quasi-projective variety Y
of even complex dimensionatted on by a finite group G with integer shjfige have the
following formula for the orbifold Hodge numbers

o0

00
n . n 1
E e(Y", Gy; x, )’)CI = | | | | 1— xsyrq[(Xy)(r,]_)d/z)es,t(y/g) . (8)

n=1 r=1 s,t

Proof. We first compute the shiftg for the orbifoldY” /G, associated to a conjugacy
classc in G,. Consider the typical class containing

glop,=((g,1,...,1),(2---n)),

whereg € G. Recall from the previous section that a fixed pointjrby the action o0,

is of the form(x, ..., x), wherex € Y&. Since, the calculation can be done locally, we will
assume that we take local coordinates . . ., z4) hear a poink € Y¢ such that the action
is given by

(6271«/—7191Z1’ o e2nJ?19

g8(z1,...,zq) = "Zry Zr4ds - -+ 2d)-

Equivalently, g is locally given by the diagonal matrix diggf™v =91, ..., eV~
where6,,1 = --- = 6; = 0. ThenonY” near(x, ..., x), g2 g, is given by a block
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diagonal matrix with blocks of the form

0 1 0 0

0 0o 1 0

0

0 0o 0 1
V-1 o 0

The characteristic polynomial of this matrixi§ — ev=% hence it has eigenvalues

)\ijeZn\/—il(ej—&-k)/n’ k=0,...,n—1

Notice thatAjx = 1 if and only if§; = k = 0. So the shift for the component oF")s»
containing(x, ..., x) is given by

r n—1

) n—1
F&% (x, ..., x) =229]:k+(d—r)zg
k=1

j=1k=0

,
—1d —1d
:ZQj_l’_u:Fof _,_u.
, 2 ¢ 2
j=1
Here, we have assumed that Y lies in the components. (o, = 1, ..., N,) andFg is
the shift for the componenty /Zg (c).
For a general conjugacy class containing an elemaftype

P = {mr (C)}rzl,ceG* s

where), .rm.(c) = n, the description of the fixed-point set”) given in (2) implies
that the components f@”)? can be listed as

A
XY onye (@) = l_[ l_[ Sm"“(“f)(YJC/ZG(C)),

rc a.=1

where(m, (1), ..., my(N.)) satisfieszo’:i‘:lmr,c(ac) = m,(c). Then, the shift for the
componen{Y”")¢ | is given by

{my.c(ac)

N,
- , —1)d
F{mr,c(ac)} = Z Z mr,c(ac) <F¢;E + (r 2 ) ) . (9)

rc a.=1

By using (2), (6), (7) and (9), we have
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D HX"; Gy x, )q"

n>0

oo
Z ® ® (Smm.(a(l)(YOfc/ZG (C))’ X, y) {F{mr.c(ar)}}qn

o (mr(©)} EP (Gy) I
r—1d
®D[L Smr((az <H(Y§(/ZG(C), X, y) {F;( —+ T qn

2

mr(C)}EPn(G ) e

r—1d
2(: S’""( 1 HYG /Zg(0); x, y){ %}q’)

{m
—1d
Z S( 1H(Y;(/Zg<c);x,y>{F;C+%}q’),

where we let

-1
mp = mr(e) =) & S™ (H(Y Zg:x.y) {%}q)

(mr) =
r—Dd) ,
=5 ZH(Y,G;x,y){T}q
r>1

Namely, we have proved that

Y HY". Guix,)q" =S (ZH(Y, Gix, (. y)“l)”’/zq’) ,
n>0 r>0

which impliesimmediately the theorem by means of Lemma 3.2. O

Remark 3.2. Wheng is trivial andY is an algebraic surface, Theorem 3.1 recovers the
orbifold Hodge numbers for the symmetric proddé€y/ S,, which was calculated in [16,30].
On the other hand, if we set= y = 1 we recover the orbifold Euler numbers #t/G,
which was first computed in [27] for any topological spate

Remark 3.3. In the above, we have constrained ourselves to the case that the shift numbers
are integers. Physicists are also interested in the case of fractional shift numbers (see, e.g.,
[29]). It is straightforward to generalize our result.

3.3. Some consequences

We assume thaY is a quasi-projective surface acted upon by a finite gréymand
that X is a resolution of singularities of the orbifold/ G. We denote by ["l the Hilbert
scheme of: points onX. It is well known (cf. [13,15]) that the Hilbert—Chow morphism



164 W. Wang, J. Zhou/ Journal of Geometry and Physics 38 (2001) 152—-169

xl"l — x7/s, is a resolution of singularities. Indeed it is crepant. We have the following
commutative diagram [27]

xH o~ xns,
I )
Y'/G, (Y/G)"/Sn

K

which implies that the Hilbert schemé!”] is a resolution of singularities of the orbifold
X"/Gy.

As calculated in [8,17], the Hodge numbers for the Hilbert sch&fikare given by the
following formula:

o0

00
1
[n],.. n o _
ZE(X x;9q" = l_[ l_[(l _ xsytqr(xy)r—l)es’t(X) .

n=1 r=1 st

Here and below we use the cohomology with compact supports.

By comparing with Theorem 3.1 we obtain the following theorem which provides us
a large class of higher dimensional examples which verify the orbifold Hodge number
conjecture (cf. [4,5,26,29]). The assumption of the theorem is necessary by Remark 2.1.

Theorem 3.2. Let Y be a smooth quasi-projective surface which admits a G-action with
only isolated fixed points. Assume that X — Y /G is aresolution such that(X; x, y) =
eY,G; x,y). Let X["] be the Hilbert scheme of n points ¥f Then for allr, s we have

hr,S(X[n] — hr,s(Yn’ Gn)

Remark 3.4. WhenG is trivial and X equalsY, we recover the theorem of [16,30]. We

will see later many interesting examples arise wiseis not trivial.
More generally ifY has dimension greater than 2, there is no such a favorable resolution

as Hilbert scheme for” /G,. Nevertheless, we have the following interesting corollary of
Theorem 3.1. Here we assume that the shifts are integers for the orbjfaldso that its
orbifold Hodge numbers are well defined.

Corollary 3.1. LetY be a smooth variety of even dimension acted on by a finite gibup
of automorphisms, and : X — Y/G is a resolution such that*!(X) = h%'(Y, G) for
all s, z, then for alls, t we have

X", ) = B (Y, G).

4. Examples and applications

In this section we provide various concrete examples which satisfy the assumptions of
Theorems 3.1 and 3.2. We also give explicit conjectures on the elliptic genera for the wreath
product orbifolds.
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4.1. Various examples

Example 4.1. WhenG is trivial and X equalsY, this gives us the example of symmetric
products [15,30].

Example 4.2.Y is C2 is a finite subgroup o8Ly(C), and X is the minimal resolution
of C?/G. The exceptional fiber consists fif,| — 1 irreducible components which are
(—2)-curves (cf., e.g., [19]). We have

1, s=1t=0,
P'(X)=1{1G -1 s=t=1,
0, otherwise

On the other hand, for any non-trivial conjugacy class G, the corresponding shift is 1

and thus makes a contributiontd1(C2, G) whichresults that»1(C2, G) = |G,|—1. The
otherh*!(C?, G) can be also seen to coincide with’ (X). This example has played a key

role in the connections between the wreath product orbifolds and the vertex representations
of affine and toroidal Lie algebras [14,27,28].

Example 4.3(Bryan—-Donagi—Leung [7]). LeY be an abelian surface (two-dimensional
torus). TheZs-action induced by the involution : x — —x has 16 fixed points, at each
of which the shiftF7 is 1. So the twisted sectors contribute an extra 16%é. Write

Y = C2/L for some latticel, and let(z1, z») be the linear coordinates d@?. ThenH**Y

is generated by}, dz1, dz2, dz2. The action ofr just takes @/ to —dz/, etc. Hence, it is
clear that

H**(¥)"2 = C@ Cdz' A de? @ (85 ,_,Cd/ A di¥) @ Cdz! A dz?

@Cdzt A dz? A dzt A dZ2.

Therefore,
1, s=1t=0,
20, s=t=1,
WY, Z)=431 s=2r=0o0rs=0,t=2,
1, s=t=2,
0, otherwise

The minimal resolutiorX — Y/ + 1 is a crepant resolution, whekeis a K3 surface. This
is the famous Kummer construction. By the well known Hodge numbers of a K3 surface,
we haveh® ! (X) = h*!(Y, Zo) for all s, ¢.

Example 4.4. Let Z3 act onCP, by

a-[z0:z1: 2] = [ezo: e tz1 : zo],
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whereq is a generator df3 and identified with a cubic root of unity on the right-hand side.
This action has three fixed pointgg =[1:0:0],p1 =[0:1:0],andp, =[0:0: 1].

At these points, the weights of the action are (1,2), (2,1), and (1,2) respectively. It is then
straightforward to see that fgr== 1 we have

Fo=1+3=1
Therefore,

H**(CPa, Z3) = H**(CPp)™ & &%_oH** (p)™2{1} @ @_oH™* (p;)"3{1},
and hence

s t

Il
N B O

3

N t

h*'(CP2, Z3) = ’
s=t

3

o P N B

otherwise

The minimal resolutionX = Cmg is obtained by replacing each singﬂaipoint by a
string of two(—2)-curves, each of which contributes 1461, henceh™ of CP»/Z3is 7.
This resolution is a crepant resolution.

Example 4.5. Letn > 2 be an odd number. Consider the actioZgfon CP3 given by

o-[z0:z71: 22 23] =[z0: 21 @z2 i @ 23],

whereq is a generator of,. It has a fixed lin€{[zo : z1 : 0 : 0]} and two isolated fixed
pointsP:0:1:0],and[0:0:0:1]. Let,, , be the Fermat surface defined by

4z + 25 =0
in CP3. The above action preservés ,, with mnisolated fixed points:
[1:e@FDTV=1/mn . -0 k=0,... mn—1

Note the action is semi-free, i.e. the stabilizers are either trivial or the whole groear
each of the fixed points, say [£7Y~(MY : 0 : ], ¥,,., is given by the equation
14+ui +ub+u3=0,

whereu; = z;/z0. We can useu?, uz) as local coordinates, thefy, acts with weight

(1, -1), i.e.Z, acts locally by matrices iBL(2, C). ThereforeY,, ,/Z, admits a crepant
resolution obtained by replacing each isolated singular point with a string-of copies

of (—2)-curves.

Example 4.6. Denote now by a generator 0%.4. Consider th&Zs-action onCP3 given
by

B-lz0:21:22: 23] = [z0: 211 v/ —1z3 : V/—1z2].
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Combined with th&Z,,-action in Example 4.5, we get an action of the binary dihedral group
D} onCIPz which preserve$y, ,. By the same method as in Example 4.5 one can find the
fixed points and sees th&i,, ,/D;; admits a crepant resolution.

Example 4.7. The method of Examples 4.5 and 4.6 can be generalized to other finite
subgroups 08L(2, C). Given such a groug, let it act onC* on the last two factors. This
action induces an action diiP3. Now consider a smooth hypersurfacedefined by an
equation of the form

f(zo0,z21) + g(z2,23) =0,

wheref andg are two homogeneous polynomials of the same degreeg, iargh invariant
polynomial forG. Using the explicit description of thé-action onC? and the invariant
polynomials (see, e.g., [21]), one can find many examples which admits crepant resolu-
tions. One should be able to find more examples by considering complete intersections in
(weighted) projective spaces.

Example 4.8. More complicated examples can be found in two papers by Barlow [2,3],
e.g., the quotient of a Hilbert modular surfaceZyor D1, or the quotient of a complete in-
tersection of four quadrics il Ps by a group of order 16, or the quotient of a Godeaux—Reid
surface by an involution.

4.2. Conjectures on elliptic genera of wreath product orbifolds

LetY be a compact Kahler manifold of complex dimensibrienote byTY (resp.7*Y)
its holomorphic tangent (resp. cotangent) bundle. Consider the formal power series of vector
bundles:

Eqy(Y) =y /2 ® (A_yq1(T"Y) & A 10 (TV) & Sy (T*Y) @ S (TY)).
nz

If we write
Eqy(¥) = q"y Eni(Y),
m=>0,l

we easily see that eadh, ; is a holomorphic bundle of finite rank, hence one can consider
its Riemann—Roch number

c(m, 1) = x(En1(Y)) = Y (=D*dimH*(Y, E,, 1(Y)).
k>0
The generating function
x(Yiq,y) = Z q" Y X (Emi(Y)) = X (Eq,y(Y))
m=>0,l

is called theelliptic genusof Y (cf. [18,22]). In the very important special case wiges O,
one recovers the Hirzebruch genus:



168 W. Wang, J. Zhou/ Journal of Geometry and Physics 38 (2001) 152—-169
Eoy(Y) =y 2A_(T*Y), x(¥;0,y)
=y Px (1) =y (=D (=) R ().

s,t>0

We do not know of a good mathematical formulation of elliptic genera for orbifolds.
However, physicists have interpreted elliptic genera as partition functions of supersymmetric
sigma models, which makes sense also for orbifolds (cf. [11,22] and references therein).
Based on physical arguments and the description of fixed-point sets for the symmetric group
action onY”, Dijkgraaf et al. [11] derived a formula for the elliptic genera of the symmetric
productsS” (Y) in terms of that off . In the case of a K3 surface or an abelian surface, they
also conjectured that the same formula should compute the elliptic genera of the Hilbert
schemes. Their method, if it can be made mathematically rigorous, should also provide the
proof of the following conjectures with suitable modifications. (In the following we denote
by x (Y, G; g, y) the elliptic genera of an orbifoll /G .)

Conjecture 4.1. Let Y be a KahlerG-manifold. If we write the elliptic genus for/G as
xY,G;q,y) = Zmzo,zc(m’ g™ y', then the elliptic genus for the wreath product orbifold
Y" /G, is given by the following formula:

o
DoV, Gnia =[]

N=0 n>0,m>0,/

1
(_‘]_ _ pnqmyl)c(n,m,l) .

Conjecture 4.2. LetY be a KahleiG-surface. We assume thitis a resolution of singular-
ities of Y/ G such thaty (Y, G: q. y) = x(X: ¢.y). Thenx (Y", Gu: q. y) = x (X[ ¢, y)
for all n.

WhenG is trivial, one recovers the symmetric product situation as in [11]. In this case,
theq = 0 version of Conjecture 4.1 has been verified in [30] as a corollary of the calculation
of orbifold Hodge numbers. Similarly, our results in Section 3 can be viewed as supporting
evidence for the above conjectures in the general setup of wreath product orbifolds.

Note addedIn a recent remarkable paper [6], Borisov and Libgober have introduced the
mathematically rigorous notion of orbifold elliptic genera among other things, and verified
our Conjecture 4.1.
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